1
0
Fork 0

avcodec/mlpenc: implement advanced stereo rematrix

This commit is contained in:
Paul B Mahol 2023-10-16 12:42:30 +02:00
parent 727ee32da7
commit b206056c82
1 changed files with 84 additions and 58 deletions

View File

@ -135,6 +135,7 @@ typedef struct MLPEncodeContext {
int min_restart_interval; ///< Min interval of access units in between two major frames.
int cur_restart_interval;
int lpc_coeff_precision;
int rematrix_precision;
int lpc_type;
int lpc_passes;
int prediction_order;
@ -263,8 +264,8 @@ static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev
if (!mp->count)
return 0;
for (unsigned int channel = rh->min_channel; channel <= rh->max_channel; channel++)
if (prev->fbits[channel] != mp->fbits[channel])
for (unsigned int ch = rh->min_channel; ch <= rh->max_channel; ch++)
if (prev->fbits[ch] != mp->fbits[ch])
return 1;
for (unsigned int mat = 0; mat < mp->count; mat++) {
@ -274,8 +275,8 @@ static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev
if (prev->lsb_bypass[mat] != mp->lsb_bypass[mat])
return 1;
for (unsigned int channel = 0; channel < ctx->num_channels; channel++)
if (prev->coeff[mat][channel] != mp->coeff[mat][channel])
for (unsigned int ch = 0; ch <= rh->max_matrix_channel; ch++)
if (prev->coeff[mat][ch] != mp->coeff[mat][ch])
return 1;
}
@ -1143,8 +1144,7 @@ static int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
* lossless_check_data that will be written to the restart header.
*/
static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
int nb_samples,
int is24)
int nb_samples, int is24)
{
int32_t *lossless_check_data = &ctx->b[ctx->frame_index].lossless_check_data;
const int32_t *samples_32 = (const int32_t *) samples;
@ -1167,6 +1167,14 @@ static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
}
}
for (int i = nb_samples; i < ctx->avctx->frame_size; i++) {
for (unsigned int ch = 0; ch <= rh->max_channel; ch++) {
int32_t *sample_buffer = ctx->b[ctx->frame_index].inout_buffer[ch];
sample_buffer[i] = 0;
}
}
ctx->b[ctx->frame_index].max_output_bits = bits;
*lossless_check_data++ = temp_lossless_check_data;
@ -1330,8 +1338,11 @@ static int estimate_coeff(MLPEncodeContext *ctx,
MatrixParams *mp,
unsigned int ch0, unsigned int ch1)
{
int first = 1, x, x0;
int64_t g = 0, g0 = 0;
int32_t maxl = INT32_MIN, maxr = INT32_MIN, minl = INT32_MAX, minr = INT32_MAX;
int64_t summ = 0, sums = 0, suml = 0, sumr = 0, enl = 0, enr = 0;
const int shift = 14 - ctx->rematrix_precision;
int32_t cf0, cf1, e[4], d[4], ml, mr;
int i, count = 0;
for (int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &ctx->b[j].decoding_params;
@ -1341,56 +1352,63 @@ static int estimate_coeff(MLPEncodeContext *ctx,
ch[1] = dp->sample_buffer[ch1];
for (int i = 0; i < dp->blocksize; i++) {
int64_t c0, c1;
int32_t a0, a1;
int32_t lm = ch[0][i], rm = ch[1][i];
c0 = ch[0][i];
c1 = ch[1][i];
enl += FFABS(lm);
enr += FFABS(rm);
if (!c0 && !c1)
continue;
summ += FFABS(lm + rm);
sums += FFABS(lm - rm);
if (!c0 || !c1) {
g0 = 0;
goto end;
}
suml += lm;
sumr += rm;
a0 = FFABS(c0);
a1 = FFABS(c1);
maxl = FFMAX(maxl, lm);
maxr = FFMAX(maxr, rm);
if (a0 >= a1) {
g = (c1 * (1 << 14)) / c0;
x = ch1;
} else if (a0 < a1) {
g = (c0 * (1 << 14)) / c1;
x = ch0;
}
if (first) {
g0 = g;
x0 = x;
first = 0;
} else if (g != g0 || x != x0) {
g0 = 0;
goto end;
}
minl = FFMIN(minl, lm);
minr = FFMIN(minr, rm);
}
}
end:
if (g0) {
mp->outch[0] = (x0 == ch0) ? ch0 : ch1;
summ -= FFABS(suml + sumr);
sums -= FFABS(suml - sumr);
mp->coeff[0][ch0] = (x0 == ch1) ? g0 : 0;
mp->coeff[0][ch1] = (x0 == ch0) ? g0 : 0;
ml = maxl - minl;
mr = maxr - minr;
mp->forco[0][ch0] = 0;
mp->forco[0][ch1] = 0;
if (!summ && !sums)
return 0;
return 1;
}
if (!ml || !mr)
return 0;
return 0;
if ((FFABS(ml) + FFABS(mr)) >= (1 << 24))
return 0;
cf0 = (FFMIN(FFABS(mr), FFABS(ml)) * (1LL << 14)) / FFMAX(FFABS(ml), FFABS(mr));
cf0 = (cf0 >> shift) << shift;
cf1 = -cf0;
if (sums > summ)
FFSWAP(int32_t, cf0, cf1);
count = 1;
i = enl < enr;
mp->outch[0] = i;
d[!i] = cf0;
d[ i] = 1 << 14;
e[!i] = cf1;
e[ i] = 1 << 14;
mp->coeff[0][ch0] = av_clip_intp2(d[0], 15);
mp->coeff[0][ch1] = av_clip_intp2(d[1], 15);
mp->forco[0][ch0] = av_clip_intp2(e[0], 15);
mp->forco[0][ch1] = av_clip_intp2(e[1], 15);
return count;
}
/** Determines how many fractional bits are needed to encode matrix
@ -1400,10 +1418,11 @@ static void code_matrix_coeffs(MLPEncodeContext *ctx,
DecodingParams *dp,
unsigned int mat)
{
RestartHeader *rh = ctx->cur_restart_header;
MatrixParams *mp = &dp->matrix_params;
int32_t coeff_mask = 0;
for (unsigned int channel = 0; channel < ctx->num_channels; channel++) {
for (unsigned int channel = 0; channel <= rh->max_matrix_channel; channel++) {
coeff_mask |= mp->coeff[mat][channel];
}
@ -1787,10 +1806,12 @@ static void generate_2_noise_channels(MLPEncodeContext *ctx)
/** Rematrixes all channels using chosen coefficients. */
static void rematrix_channels(MLPEncodeContext *ctx)
{
RestartHeader *rh = ctx->cur_restart_header;
DecodingParams *dp1 = &ctx->b[1].decoding_params;
MatrixParams *mp1 = &dp1->matrix_params;
unsigned int maxchan = ctx->num_channels;
int32_t input_samples[MAX_NCHANNELS];
unsigned int maxchan = rh->max_matrix_channel;
int32_t orig_samples[MAX_NCHANNELS];
int32_t rematrix_samples[MAX_NCHANNELS];
uint8_t lsb_bypass[MAX_MATRICES] = { 0 };
for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
@ -1798,35 +1819,39 @@ static void rematrix_channels(MLPEncodeContext *ctx)
MatrixParams *mp = &dp->matrix_params;
for (unsigned int i = 0; i < dp->blocksize; i++) {
for (unsigned int ch = 0; ch < maxchan; ch++)
input_samples[ch] = dp->sample_buffer[ch][i];
for (unsigned int ch = 0; ch <= maxchan; ch++)
orig_samples[ch] = rematrix_samples[ch] = dp->sample_buffer[ch][i];
for (unsigned int mat = 0; mat < mp1->count; mat++) {
for (int mat = 0; mat < mp1->count; mat++) {
unsigned int outch = mp1->outch[mat];
int64_t accum = 0;
for (unsigned int ch = 0; ch < maxchan; ch++) {
int32_t sample = input_samples[ch];
for (int ch = 0; ch <= maxchan; ch++) {
int32_t sample = rematrix_samples[ch];
accum += (int64_t)sample * mp1->forco[mat][ch];
}
dp->sample_buffer[outch][i] = accum >> 14;
rematrix_samples[outch] = accum >> 14;
}
for (unsigned int ch = 0; ch <= maxchan; ch++)
dp->sample_buffer[ch][i] = rematrix_samples[ch];
for (unsigned int mat = 0; mat < mp1->count; mat++) {
int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat];
unsigned int outch = mp1->outch[mat];
int64_t accum = 0;
int8_t bit;
for (unsigned int ch = 0; ch < maxchan; ch++) {
int32_t sample = dp->sample_buffer[ch][i];
for (unsigned int ch = 0; ch <= maxchan; ch++) {
int32_t sample = rematrix_samples[ch];
accum += (int64_t)sample * mp1->coeff[mat][ch];
}
bit = (accum >> 14) != input_samples[outch];
rematrix_samples[outch] = accum >> 14;
bit = rematrix_samples[outch] != orig_samples[outch];
bypassed_lsbs[i] = bit;
lsb_bypass[mat] |= bit;
@ -2170,6 +2195,7 @@ static const AVOption mlp_options[] = {
{ "prediction_order", "Search method for selecting prediction order", OFFSET(prediction_order), AV_OPT_TYPE_INT, {.i64 = ORDER_METHOD_EST }, ORDER_METHOD_EST, ORDER_METHOD_SEARCH, FLAGS, "predm" },
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, 0, 0, FLAGS, "predm" },
{ "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, 0, 0, FLAGS, "predm" },
{ "rematrix_precision", "Rematrix coefficient precision", OFFSET(rematrix_precision), AV_OPT_TYPE_INT, {.i64 = 1 }, 0, 14, FLAGS },
{ NULL },
};